Broadband Tunable Metamaterial Absorber Based on U-shaped Ferrite Structure
نویسندگان
چکیده
منابع مشابه
Liquid crystal tunable metamaterial absorber.
We present an experimental demonstration of electronically tunable metamaterial absorbers in the terahertz regime. By incorporation of active liquid crystal into strategic locations within the metamaterial unit cell, we are able to modify the absorption by 30% at 2.62 THz, as well as tune the resonant absorption over 4% in bandwidth. Numerical full-wave simulations match well to experiments and...
متن کاملA Broadband Flexible Metamaterial Absorber Based on Double Resonance
We present a broadband microwave metamaterial (MM) absorber, the unit cell of which consists of a lumped-resistor-loaded electric-inductive-capacitive (ELC) resonator and a cut-wire on the same side of a flexible polyimide substrate. In contrast to the common MM absorber, the metallic pattern layer of the proposed structure is placed parallel to the direction of propagation of the incident wave...
متن کاملBroadband terahertz metamaterial absorber based on sectional asymmetric structures
We suggest and demonstrate the concept and design of sectional asymmetric structures which can manipulate the metamaterial absorber's working bandwidth with maintaining the other inherent advantages. As an example, a broadband terahertz perfect absorber is designed to confirm its effectiveness. The absorber's each cell integrates four sectional asymmetric rings, and the entire structure compose...
متن کاملMagnetically Tunable Ferrite-Dielectric Left-Handed Metamaterial
In this paper, a magnetically tunable metamaterial is proposed and studied. The metamaterial is based on the combination of ferrite sheets and dielectric rods. The tunable property is originated from the ferromagnetic resonance and electric response of dielectric rods. The retrieved electromagnetic parameters and transmission characteristic showed that by simultaneously inspiring the ferromagne...
متن کاملA broadband low-reflection metamaterial absorber
Artificially engineered metamaterials have enabled the creation of electromagnetic materials with properties not found in nature. Recent work has demonstrated the feasibility of developing high performance, narrowband electromagnetic absorbers using such metamaterials. These metamaterials derive their absorption properties primarily through dielectric loss and impedance matching at resonance. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2947140